

IIT1500 Industrial-Grade Current Transducer

IIT1500 has a high gain and measurement accuracy in the full bandwidth range, due to the application of the multi-point zero-flux technology system and high-frequency ripple sensing channel on top of currently existing DC sensor technology.

The multi-point zero-flux technology system secures the high accuracy by utilizing the technology combination of exciting magnetic flux closed-loop control, self-excited magnetic flux gate and multi-closedloop control that realizes the closed-loop control between excitation magnetic flux and AC/DC magnetic flux generated by primary current, while the high-frequency ripple sensing channel allows the sensor to have the high performance over the full bandwidth range.

Product photo

Website: www.hangzhiprecision.com

Key Technologies

- Excitation closed-loop control technology
- Self-excitation demagnetization technology
- ♦ Multi-point zero-flux technology
- ♦ Temperature control compensation technology
- Multi-range automatic switching technology

Features

- Insulated measurement between primary and secondary side
- ♦ Excellent linearity and accuracy
- ♦ Extremely low temperature drift
- ♦ Extremely low zero drift
- Broad band and low response time
- ♦ Strong anti-electromagnetic interference

Application Domain

♦ Medical Equipment: Scanner, MRI

♦ Rail Transit: EMU, Metro, Trolly car□

♦ Power industry: Converter, Inverter □

♦ Ship: Electric driven ship

- ♦ Renewable Energy: Photovoltaic, Wind energy □ ♦ Car: Electric car
- ♦ Testing Instrument: Power analyzer, High-precision power supply
- ♦ Smart Power Grid: Power generation and battery monitoring, Medium low voltage substation
- ♦ Industry Control: Industrial motor drive, UPS, Welding, Robot, Hoist, Elevator, Ski lift

Electrical Performance

Parameter	Symbol	Measuring Conditions	Min	Тур	Max	Unit
Primary nominal direct current	I _{PN_DC}	_	_	±1500	_	Adc
Primary nominal alternating current*	I _{PN}	_	_	1060	_	Aac
Primary overload current	I _{PM}	1 Minute	_	_	±1600	Adc
Operating voltage	Vc	_	±14.2	±15	±15.8	V
Power consumption current	I _{PWR}	Rated primary current	±30	±1030	±1100	mA
Current ratio	K _N	Input : Output	1000:1	1000:1	1000:1	_
Rated output current	I _{SN}	Rated Primary current	_	±1.5	_	А
Secondary burden resistance	R _M	See Fig. 1	0	1	2	Ω

^{*} refers to AC effective value

Accuracy Measurement

Parameter	Symbol	Measuring Conditions	Min	Тур	Max	Unit
Accuracy	X _G	Input direct current, full temperature range	_	_	0.02	%
Linearity	εL	Full temperature range	_	_	20	ppm
Zero offset current	I _{OT}	@25°C	_	_	±5	μA
Zero offset current	lo	Full temperature range	_	_	±10	μΑ
Response time	t _r	di/dt=100A/us, rised to 90%I _{PN}	_	_	1	us
Current change rate	di/dt	-	200	_	_	A/us
Frequency bandwidth (-3dB)	F	-	0	_	100	kHz

Safety Characteristics

Parameter	Symbol	Measuring Conditions	Value	Unit
Insulation voltage / Between primary and secondary sides	Vd	50Hz,1min	5	K۷
Transient isolation withstand voltage / Between primary and secondary sides	Vw	50us	10	KV
Creepage distance / Between the primary and the outer shell	dCp	_	11	mm
Clearance distance / Between the primary and the outer shell	dCi	_	11	mm
Comparative tracking index	CTI	IEC-60112	600	V

General Characteristics

Parameter	Symbol	Measuring Condition	Min	Тур	Max	Unit
Ambient operating	TA	_	-40	_	+85	°C
temperature						
Mass	M	_		1150±80		g

Operating Status Instructions

♦ Normal status:

The green light indicator is on when the device is running normally:

After the device is powered on, the green indicator is on when the device is running normally. When the green light is off, you should check whether the power supply of the transducer is normal as the first step.

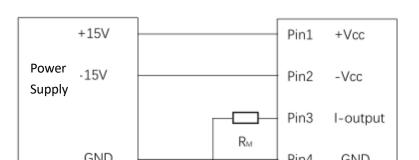
♦ Fault status:

The green light is blinking when the current overloads.

Trouble-shooting:

If the power supply is normal, the green light indicator keeps on blinking, then the primary current is over the specified measurement range and the transducer will be in overload mode. In this mode, the transducer will be working in non-zeroflux mode, the secondary and primary currents are not in proportion. When the current recovers to the specified measurement current range, the current transducer returns to normal, green light indicator will be on.

Connection system


1. Phoenix terminal pin function definition

Pin	1	2	3	4
Definition	+15V	-15V	I Output	GND
Definition	Supply	Supply	_Output	GIVD

IIT Series Transducer

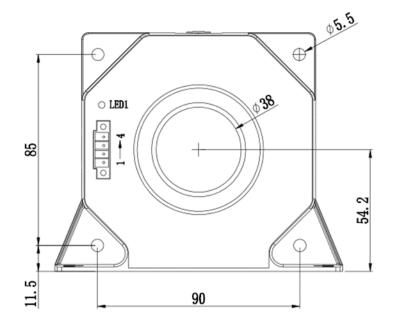
SHENZHEN HANGZHI PRECISIO Add: Rm 531 Building B. Huayuan I

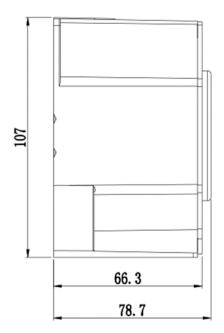
Add: Rm 531, Building B, Huayuan I Baoyuan Rd, Bao'an District, Shenzl Email: sales@hangzhiprecision.com Tel: +86 (0)755 8259 3440

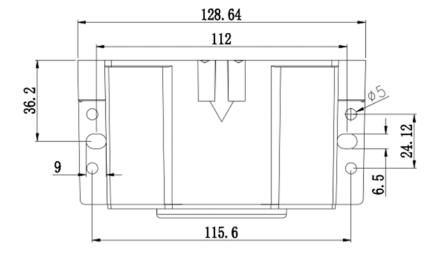
4

Test instruction:

The primary current I_P can be obtained by measuring the test current I_s flowing through R_M or the voltage U_R across R_M :


$$I_{P} = K_{N} * I_{S} = K_{N} * (U_{R}/R_{M})$$


Dimensions


Unit: mm

Website: www.hangzhiprecision.com

